Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope
نویسندگان
چکیده
Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.
منابع مشابه
Electron beam excitation assisted optical microscope with ultra-high resolution.
We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nano...
متن کاملSecondary Electron Imaging of Light at the Nanoscale.
The interaction of fast electrons with metal atoms may lead to optical excitations. This exciting phenomenon forms the basis for the most powerful inspection methods in nanotechnology, such as cathodoluminescence and electron-energy loss spectroscopy. However, direct nanoimaging of light based on electrons is yet to be introduced. Here, we experimentally demonstrate simultaneous excitation and ...
متن کاملLongitudinal label-free tracking of cell death dynamics in living engineered human skin tissue with a multimodal microscope.
We demonstrate real-time, longitudinal, label-free tracking of apoptotic and necrotic cells in living tissue using a multimodal microscope. The integrated imaging platform combines multi-photon microscopy (MPM, based on two-photon excitation fluorescence), optical coherence microscopy (OCM), and fluorescence lifetime imaging microscopy (FLIM). Three-dimensional (3-D) co-registered images are ca...
متن کاملCathodoluminescence-activated nanoimaging: noninvasive near-field optical microscopy in an electron microscope.
We demonstrate a new nanoimaging platform in which optical excitations generated by a low-energy electron beam in an ultrathin scintillator are used as a noninvasive, near-field optical scanning probe of an underlying sample. We obtain optical images of Al nanostructures with 46 nm resolution and validate the noninvasiveness of this approach by imaging a conjugated polymer film otherwise incomp...
متن کاملPlasmonics for near-field nano-imaging and superlensing
Scientists have long dreamt of an optical microscope that can be used to see a sample in nanometre resolution. Because light propagates through water and air, an optical microscope can be used to see, in vivo, the details of living matter and other materials in their unperturbed natural condition. In addition, an optical microscope provides colour images that contain much richer information tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015